

						
	Consumer KB
	Blog
	CCBill Home
	Contact Us
	 				 					Search for: 					 					

CCBill API: One Click

Topics

►

	Overview

		Home
	General References and Resources

	FAQ

		Frequently Asked Questions
	Payment Processing Glossary

	REST API

		Advanced REST API Guide Overview
	Technical Guide for Creating and Charging Payment Tokens
	CCBill RESTful API Resources
	CCBill RESTful API Schemas
	RESTFul API Error Codes
	GitHub

	Legacy API

		Legacy API Guides
	API Guide: Overall
	API Guide: Tangibles
	API: One Click
	API: Direct Discount API
	API: Advanced Dynamic Upgrades
	API: Charge by Previous Transaction ID
	API: Advanced Affiliate Options
	API: Cancel Subscription
	API -7 Error Explained
	API: Velocity Controls
	API: Subscription Upgrade System
	API: Subscription Upgrade System Addendum A: Dynamic Upgrades
	API: Subscription Upgrade System Addendum B: One-Click Upgrades

	Data Link Extract System User Guide
	Background Post
	Managing Multiple Products

	Webhooks

		Webhooks Overview
	Webhooks User Guide

	Payment Forms

		FlexForms
	FlexForms Overview
	FlexForms Quick Start Guide
	FlexForms Image Library
	FlexForms URLs Library
	FlexForms Forms Library
	Managing FlexForms Payment Flows
	Custom CSS for FlexForms
	FlexForms Cascade Setup
	FlexForms A/B Testing
	JPost to FlexForms Guide
	FlexForms Supported Languages and Currencies

	Dynamic Pricing User Guide
	Accepted Payment Methods
	3rd Party Integrations
	WooCommerce Module
	osCommerce Dynamic Pricing Integration
	VirtueMart Module
	X-Cart Module
	DatingPro Module
	WHMCS Billing Module
	NATS4 and CCBill Setup
	YNOT Mail Setup Walkthrough
	Using CCBill's Payment Services with Snapchat

	Admin Portal

		Admin Portal - Account Info
	Resetting CCBill Admin Password
	Promotion and Discount Systems
	Reporting System
	Check Amounts Report
	Legacy Affiliate

	Account Change Forms

		Account Change Forms

	Contact Us

		Become a CCBill Partner
	Contact Us

CCBill API: One Click
Contents	Introduction
	Scope
	Terminology
	Support for CCBill Velocity Controls
	Overview
	Implementation
	Methods	Advanced Method
	Simple Method

	API Integration
	Sponsor Merchant Functions	getCrossSaleSessionInfo/getCrossSaleTokenInfo	Example
	Response:

	paymentInfo
	chargeCrossSaleBySession/chargeCrossSaleByToken	Example
	Response:

	createUserForCrossSaleSession/createUserForCrossSaleToken	Example
	Response:

	Affiliate Merchant Functions	generateSessionForCrossSale	Example
	Response:

	One-Click Cross Sale API Flow Charts	Simple Method
	Advanced Method

	Appendix A: Error Codes and Descriptions
	Best Practices

Introduction

This document is an Addendum to the CCBill API and discusses both Sponsor Merchant and Affiliate Merchant configuration of the CCBill API functions required for implementation of the One-Click Cross Sale feature now supported by the CCBill API. Make sure to read the Best Practices section at the end of this document to minimize the risk of chargebacks and revenue loss.

This document should also be used by merchants using the OneClick Network to assist developers with the API integration methods required to implement that system by both Sponsor Merchants and Affiliate Merchants.

Scope

The CCBill API is considered to be an Advanced Feature. As such this document assumes the following:

	The user has already enabled the CCBill API.
	The user possesses intermediate to advanced programming skills.
	The user possesses the programming skills necessary to create scripts and implement them in the context of this document.
	The user possesses knowledge of SOAP, HTML, XML and other web development technologies.
	The user has already received permission for and enabled Web Marketing Service (WMS), and One-Click Cross Sales on their account (these requirements are described further in the One-Click Cross Sale User’s Manual).
	The user has already set up User Management, if desired.

Terminology

The One-Click Cross Sale feature places Merchants into roles not previously available to CCBill Merchants, requiring the introduction of two new terms as follows:

	Sponsor Merchant. The Sponsor Merchant is a Merchant that wants to have other Merchants refer sales to them using the One-Click Cross Sale feature.
	Affiliate Merchant. The Affiliate Merchant is a Merchant who assumes the role of an Affiliate in order to use One-Click Cross Sales to refer its existing consumers to a Sponsor Merchant in exchange for a portion of the revenue generated by that sale.

Support for CCBill Velocity Controls

CCBill Velocity Controls is an advanced feature of the CCBill API, and it enables you to limit customer transactions by the number of transactions and/or by cash amount of transactions within a specific time-frame. This means that you can set the number of transactions for a specific customer within a given period of time. Rules apply to all payment types and can be implemented on a single subaccount or across all subaccounts.

When applied, each customer is assigned a unique ID based on their financial information and security background. By setting up CCBill Velocity Controls, you limit the chances of fraud and, on an individual basis, you allow good loyal customers to continue to make purchases beyond the established limits.

If you are interested in this advanced feature, please contact merchantsupport@ccbill.com to set up velocity controls according to your business requirements.

Overview

The CCBill API is adding functionality that allows Affiliate Merchants to refer sales to Sponsor Merchants. Proper implementation of the One-Click Cross Sales API will have the result of the Affiliate Merchant being able to refer current consumers through their member’s area, allowing the consumer to make the purchase on the Sponsor Merchant’s site without having to enter in payment or user information in most instances.

Implementation

The implementation of the One-Click Cross Sale API will be different for almost every situation. This document intends to provide you with an overview of the process and the necessary calls for the supported methods of submission and retrieval; you will need to use the provided information and mold it to your own setup.

Methods

There are two basic methods of One-Click Cross Sale implementation:

	Advanced Method. This method is preferred. The Advanced Method requires the Affiliate Merchant’s full integration with both CCBill API and User Management but provides the most seamless experience for consumers.
	Simple Method. The Simple Method is easier to implement for Affiliate Merchants, but may result in more consumer intervention; including ID verification and/or re-entering payment and user information. There are two sub-options available for the Simple Method:	With Subscription ID requires the least Affiliate Merchant intervention
	With Username requires Affiliate Merchant integration with User Management

Advanced Method

The Advanced Method requires Affiliate Merchants to fully integrate with the CCBill API. The Affiliate then uses the “Get Cross Sale Token” calls in the CCBill API to generate and return an authenticated token via a script that makes these calls every time the consumer is presented with the marketing material for the program. WMS then replaces that token with a modified version that contains the WMS participation ID. The Sponsor Merchant’s site will use the CCBill API to make a “Charge By Token” call to the CCBill API to complete the purchase. In the event that the token is not authenticated (the Authentication Period has lapsed) the consumer will be required to provide some identity verification to obtain a verified token and resubmit the “Charge By Token” call.

This method, although more programming-intensive, creates a more seamless experience for the user. It does, however, require more work from your Affiliate Merchants.

Simple Method

The Simple Method requires less programming from Affiliate Merchants to implement, but results in more input from the consumer in order to complete the purchase.

In the Simple Method Affiliate Merchants attach identifying information about the subscription holder to the WMS link code instead of generating a CCBill API token. The consumer is directed through WMS where an unauthenticated token that includes the Affiliate Merchant’s information and the consumer’s identifying information is created and sent to the Sponsor Merchant’s site. The consumer clicks to confirm the purchase which triggers the “Charge By Token” call to the CCBill API which in turn recognizes the unauthenticated status of the token and prompts the consumer for identity verification. If the identity is successfully verified, the CCBill API will redirect to the ”url” parameter passed in by the Sponsor Merchant (a ”failureURL” can be provided as well for instances where the consumer fails to identify themselves properly).

The Simple Method has two “sub-options” available. The only difference between the two is the parameters that are required to be sent from the Affiliate Merchant to WMS.

API Integration

	The One-Click Cross Sale API is implemented as SOAP Call. The access point is https://bill.ccbill.com/dss.
	Responses are in SOAP format and contain errorCode and errorDesc along with additional information, if applicable.
	All operations include the following parameters for authentication purposes:

	authenticationInfo
	MerchantAccnum	Integer	CCBill Merchant Account Number
	MerchantSubacc	Short	CCBill Merchant Subaccount Number
	usingMerchantSubacc	Short	CCBill Merchant Subaccount Number (when applicable and MerchantSubacc is null)
	username	String	CCBill API Username
	password	String	CCBill API Password

Sponsor Merchant Functions

getCrossSaleSessionInfo/getCrossSaleTokenInfo

	IN	authenticationInfo	 	
	IN	sessionId/tokeninfo	string	sessionId represents a unique identifier for the consumer relationship between the Affiliate Merchant and the Sponsor Merchant; tokeninfo is a transient data object that includes information that will be used to either create or lookup a session.
	OUT	email	string	Email address on record for the Affiliate Merchant's consumer.
	OUT	isAuthLocked	byte	1 = Consumer has failed too many times to be authen ticated and must try again later;
0 = Consumer has not exhausted their authentication attempts
	OUT	isAuthenticated	byte	1 = Consumer Validated their Postal Code or this was an advanced token;
0 = Consumer hasn't validated their Postal Code, their validation window has expired, or an advanced token has expired.
	OUT	authenticationUrl	string	If isAuthenticated = 0, the user will need to be redirected to this URL to validate their identity; The following parameters can be passed through to this system:
*url = URL to redirect to upon successful validation (if not provided will redirect to the HTTP_REFERER)
*failureUrl = URL to redirect to upon failed validation (if not provided will redirect to "url" parameter)
	OUT	isUserCreated	byte	1 = Sponsor has successfully registered a user for the consumer using the createUserForCrossSale method;
0=Sponsor has not yet registered a user for the consumer using the createUserForCrossSale method.
	OUT	paymentUniqueId	string	Uniquely identifies a particular payment account (credit card/exp date, ACH account/routing number) utilizing a hashing algorithm. Often used by Sponsor Merchants for fraud purposes.
	OUT	programParticipationId	integer	The unique identifier that signifies the relationship between an Affiliate Merchant and a Sponsor Merchant's program.
	OUT	sessionId	string	Same as above.
	OUT	errorCode	integer	0 = There was no error;
see Appendix A: Error Codes and Descriptions for a list of other possible codes.
	OUT	errorDesc	string	Description of the returned error; see Appendix A: Error Codes and Descriptions for a list of possible descriptions.
	OUT	subscriptionId	integer	If this is present the Sponsor Merchant has processed at least one sale with this session. The subscriptionId provided was the first sale processed.

Example

<soapenv:Envelope>
<soapenv:Body>
<q0:getCrossSaleTokenInfoRequest>
<authenticationInfo>
<MerchantAccnum>9000000</MerchantAccnum>
<username>user</username>
<password>test1234</password>
</authenticationInfo>
<tokenInfo>4OJ3K6i63IOtc0Czanbz5m2boEiaFf+lE2prv1bPkXQ=</tokenInfo> </q0:getCrossSaleTokenInfoRequest>
</soapenv:Body>
</soapenv:Envelope>

Response:

<soap:Envelope>
<soap:Body>
<getCrossSaleTokenInfoResponse>
<response>
<errorCode>0</errorCode>
<email>xxxx@ccbill.com</email>
<isAuthLocked>0</isAuthLocked>
<isAuthenticated>1</isAuthenticated>
<isUserCreated>0</isUserCreated>
<paymentUniqueId>/PvvoUQCmc3WoTssCZawbQ</paymentUniqueId>
<programParticipationId>4240</programParticipationId>
<sessionId>kmEEyxSst43rIx0Quj4RyA</sessionId>
<subscriptionId>0106100101000000001</subscriptionId>
</response>
</getCrossSaleTokenInfoResponse>
</soap:Body>
</soap:Envelope>

paymentInfo

	IN	authenticationInfo	 	 	
	IN	sessionId/tokeninfo	string	 	sessionId represents a unique identifier for the consumer relationship between the Affiliate Merchant and the Sponsor Merchant; tokeninfo is a transient data object that includes information that will be used to either create or lookup a session.
	IN	initialPrice	integer	 	Amount of the initial charge. Based on two implied decimals. For example, $2.95 should be passed as 295.
	IN	initialPeriod	integer	 	Length of the initial term of the subscription in days.
	IN	recurringPrice	integer	Optional	Amount of each recurring charge. Based on two implied decimals. For example, $29.95 should be passed 2995.
	IN	recurringPeriod	integer	Optional	Length of the recurring term of the subscription in days.
	IN	rebills	short	Optional	Number of times to rebill the subscription before the subscription ends (99 for unlimited).
	IN	currencyCode	short	Optional	ISO 4217 Numeric Currency code (i.e., US Dollars = 840); Defaults to 840.

chargeCrossSaleBySession/chargeCrossSaleByToken

	IN	passThrough pairs	name/value pairs	Optional	Miscellaenous data that the Sponsor can pass in during the signup process that will be provided back to them in the approval/denial background posts.
	OUT	approved	byte	 	0 = Declined, 1 = Approved.
	OUT	paymentUniqueId	string	 	Uniquely identifies a particular payment account (i.e., credit card/exp date, ACH account/routing number) utilizing a hashing algorithm. Some Merchants use this for fraud purposes on their side.
	OUT	sessionId	string	 	sessionId represents a unique identifier for the consumer relationship between the Affiliate Merchant and the Sponsor Merchant.
	OUT	subscriptionId	string	 	The Subscription ID of the newly processed transaction (assuming it was approved).
	OUT	denialId	integer	 	The unique descriptor of the ID.
	OUT	declineCode	integer	 	The decline code provided by the credit card processor.
	OUT	declineText	string	 	Present if the transaction is declined; provides a description about why the transaction was declined.
	OUT	authenticateUrl	string	 	Present if the token/session is unauthenticated. If isAuthenticated = 0, the user will need to be redirected to this URL to validate their identity; The following parameters can be passed through to this system:
* url = URL to redirect to upon successful validation (if not provided will redirect to the HTTP_REFERER)
* failureUrl = URL to redirect to upon failed validation (if not provided will redirect to "url" parameter)

Example

<soapenv:Envelope>
<soapenv:Body>
<q0:chargeCrossSaleBySessionRequest>
<authenticationInfo>
<MerchantAccnum>900000</MerchantAccnum>
<usingMerchantSubacc>0000</usingMerchantSubacc>
<username>testuser</username>
<password>test1234</password>
</authenticationInfo>
<sessionId>kmEEyxSst43rIx0Quj4RyA</sessionId>
<paymentInfo>
<initialPrice>1000</initialPrice>
<initialPeriod>30</initialPeriod>
</paymentInfo>
<passThroughInfo>
<pairs>
<name>field1</name>
<value>value1</value>
</pairs>
</passThroughInfo>
</q0:chargeCrossSaleBySessionRequest>
</soapenv:Body>
</soapenv:Envelope>

Response:

<soap:Envelope>
<soap:Body>
<chargeCrossSaleBySessionResponse>
<response>
<errorCode>0</errorCode>
<approved>1</approved>
<paymentUniqueId>/PvvoUQCmc3WoTssCZawbQ</paymentUniqueId>
<sessionId>kmEEyxSst43rIx0Quj4RyA</sessionId>
<subscriptionId>910089201000000023</subscriptionId>
</response>
</chargeCrossSaleBySessionResponse>
</soap:Body>
</soap:Envelope>

createUserForCrossSaleSession/createUserForCrossSaleToken

	IN	authenticationInfo	 	 	
	IN	sessionId/tokeninfo	string	 	sessionId represents a unique identifier for the consumer relationship between the Affiliate Merchant and the Sponsor Merchant; tokeninfo is a transient data object that includes information that will be used to either create or lookup a session.
	IN	SponsorMemberUsername	string	Optional	The username the Sponsor Merchant added to their website and provided to us utilizing the createUserForCrossSaleToken or createUserForCrossSaleSession methods.
	IN	SponsorMemberPassword	string	Optional	Same as SponsorMemberUsername, except for the password.
	OUT	sessionId	string	 	sessionId represents a unique identifier for the consumer relationship between the Affiliate Merchant and the Sponsor Merchant.

Example

<soapenv:Envelope>
<soapenv:Body>
<q0:createUserForCrossSaleSessionRequest>
<authenticationInfo>
<MerchantAccnum>900000</MerchantAccnum>
<username>testuser</username>
<password>test1234</password>
</authenticationInfo>
<sessionId>kmEEyxSst43rIx0Quj4RyA</sessionId>
<SponsorMemberUsername>TEST</SponsorMemberUsername>
<SponsorMemberPassword>TEST</SponsorMemberPassword>
</q0:createUserForCrossSaleSessionRequest>
</soapenv:Body>
</soapenv:Envelope>

Response:

<soap:Envelope>
<soap:Body>
<createUserForCrossSaleSessionResponse>
<response>
<errorCode>0</errorCode>
<sessionId>kmEEyxSst43rIx0Quj4RyA</sessionId>
</response>
</createUserForCrossSaleSessionResponse>
</soap:Body>
</soap:Envelope>

Affiliate Merchant Functions

generateSessionForCrossSale

	IN	authenticationInfo	 	 	
	IN	subscriptionId	integer	Optional	The Subscription ID that the Affiliate Merchant wishes to create the token from.
	IN	AffiliateMemberUsername	string	Optional	The Username that the Affiliate Merchant wishes to include in the token (will be overriden with what we have on record if they're using our user management).
	IN	AffiliateMemberPassword	string	Optional	The Password that the Affiliate Merchant wishes to include in the token (will be overriden with what we have on record if they're using our user management).
	OUT	tokeninfo	string	 	The authenticated token that's created based on the information above that they will utilize to forward the consumer through WMS to the Sponsor's website.

Example

<soapenv:Envelope>
<soapenv:Body>
<q0:generateSessionForCrossSaleByTokenRequest>
<authenticationInfo>
<MerchantAccnum>900000</MerchantAccnum>
<username>testuser</username>
<password>test1234</password>
</authenticationInfo>
<subscriptionId>0910089201000000022</subscriptionId> </q0:generateSessionForCrossSaleByTokenRequest>
</soapenv:Body>
</soapenv:Envelope>

Response:

<soap:Envelope>
<soap:Body>
<generateSessionForCrossSaleByTokenResponse>
<return>
<errorCode>0</errorCode>
<tokeninfo>4OJ3K6i63IOtc0Czanbz5thajxTbspyOu7DBqLoLt9w%3D</tokeninfo>
</return>
</generateSessionForCrossSaleByTokenResponse>
</soap:Body>
</soap:Envelope>

One-Click Cross Sale API Flow Charts

Simple Method

[image: One-Click Cross Sale API Simple Method Flow Chart]

[image: One-Click Cross Sale API Simple Method Flow Chart]

Advanced Method

[image: One-Click Cross Sale API Advanced Method Flow Chart]

[image: One-Click Cross Sale API Advanced Method Flow Chart]

Appendix A: Error Codes and Descriptions

	Error Code	Error Description
	-101	Invalid Subscription ID
	-102	Invalid Program Participation ID
	-103	Session not Found
	-104	Session is not Authenticated
	-105	Subscription ID not Present
	-106	System Error
	-107	User Already Created
	-108	Transaction Declined
	-109	Invalid Subscription
	-110	Unable to Verify Subscription
	-111	Unable to Find Customer Info
	-112	Invalid Merchant Subaccount
	-113	Invalid Recurring Info

Best Practices

CCBill’s 1-Click API’s allow merchants to offer their customers with a convenient upgrade billing solution which enables customers from having to re-enter their payment details on subsequent purchases. The API’s are managed by the merchant and transactions are initiated by the consumers within the merchant’s website or member’s area. While these can be very convenient and useful tools, they do not come without added risk. The merchant is required to manage much of the consumer experience, and the API’s are designed to bypass CCBill’s authentication system, V-Scrub.

As a result, it is imperative for the merchant to understand their responsibilities and implement a system of controls designed to manage the consumer experience and minimize the risk of chargebacks and revenue loss.

While each merchant’s business model is inherently unique, and controls they implement may differ, the following best practices act as a guide for merchants who process 1-Click transactions.

	Consumer Disclosure: Increase consumer education and awareness throughout the payment process and website.	Clear Pricing Descriptions throughout the upgrade process. Prices should include the proper currency, accurate value of credits/tokens, and should display any other terms relevant to the purchase.
	The purchase button should be action oriented to ensure the consumer is aware they are initiating a purchase.
	Clear Approval/Denial Messaging: The consumer should be made aware of the approval/denial immediately within the member’s area, and confirmation emails should be sent.
	1-Click Environment Education: Consumers need to understand they can initiate charges against their account with the click of a button. In addition to clear messaging, some merchants may want to ensure their customers can opt-in and opt-out of the 1-click environment.
	Refund Policy: The merchant’s refund policy should be easy to locate on the website, and should clearly instruct consumers what issues may result in a refund if they run into issues with their purchase.
	Billing Descriptors should reinforced in the upgrade process and in confirmation emails. The merchant’s support page should also provide reinforcement of the descriptors.
	Support Information should be prevalent throughout the entire website to ensure customers can contact support for any issue with their service.

	Velocity Controls: The 1-click API’s do not limit transaction volume, and the transactions are not scrubbed for risk.	New Customers vs. Existing: Treat new customers with added scrutiny by limiting their transactions in a given period of time. For example, a new customer should only be allowed to purchase 4 transactions within the initial 30 days.
	Existing Customers who have proven to be low risk can also be asked to revalidate their data after a higher number of transactions. For example, the customer has to opt back into the 1-click agreement after 20 transactions.

	Affiliate/Traffic Source Monitoring: The merchant should report refund and chargeback activity to their traffic sources to ensure they are being appropriately managed from month to month.	Affiliates/Traffic sources with high chargeback rates should be terminated.
	Delay payouts with new affiliate/traffic sources to ensure transactions can be reviewed prior to paying the affiliate. If high risk patterns are detected, delay the payout to ensure refunds and chargebacks can clear.
Note: This may take up to 120 days

	Model/Cam Studio Monitoring: The merchant should report refund and chargeback activity to their model and cam studio sources to ensure they are being appropriately managed from month to month.	Model/Cam Studio sources with high chargeback rates should be terminated.
	Delay payouts with new model/cam studio sources to ensure transactions can be reviewed prior to paying the affiliate. If high risk patterns are detected, delay the payout to ensure refunds and chargebacks can clear.
Note: This may take up to 120 days

	Post Transaction Monitoring: The merchant should verify a consumer if higher risk patterns or behavior is detected.	Review customers' credit/token usage patterns. New customers who do not use tokens or credits upon payment should be considered high risk.
	Review IP’s associated with logins and compare to purchase IP’s. Differences should be considered high risk.
	High dollar amounts spent in shorter periods of time should be reviewed to ensure legitimacy.

	MERCHANTS

Payment Processing
Billing Solutions
Omnichannel
Smart Checkout
Marketing & Traffic Tools
Lifecycle Support
Pricing

	INDUSTRIES

Subscription Processing
Subscription Retail
Ecommerce
Dating High Risk Business
Adult Business
Live Cams Streaming Media
Billing & Invoicing

	HELP
Docs
APIs
Knowledge Base
FAQs
Privacy Center
Do not sell or share my personal information

	CONSUMERS

Consumer Support
Get billing support, manage your subscription or update your password
Email Us

	COMPANY

About
Blog
Careers
Contact Us Legal
Complaints
DMCA
AUP
GDPR

©2024 CCBill, LLC. All rights reserved.

	

